MUNICIPAL LAND CONSERVATION PLANNING FOR FLOOD RESILIENCE IN NEW HAMPSHIRE'S COASTAL WATERSHED

Michal Zahorik

Ph.D. Candidate Department of Natural Resources and the Environment, UNH michal.zahorik@unh.edu

Catherine M. Ashcraft, Ph.D. Associate Professor Department of Natural Resources and the Environment, UNH catherine.ashcraft@unh.edu

2024 CAW Climate Summit July 18, 2024

King High Tide, Hampton, NH Photo Credit: Patricia Lane Evans

RESEARCH QUESTION

How do NH's coastal watershed municipalities use land conservation to increase flood resilience?

We are interested in:

- Institutional factors that contribute to effective municipal conservation planning
- Barriers and opportunities to land conservation as a flood mitigation strategy

STUDY AREA AND DATA COLLECTION

27 interviews with officials from 23 municipalities

- Conservation commission chairs
- Town planners
- Agricultural Commission Chairs

Review of existing studies, plans, and reports on land conservation planning and hazard mitigation.

LAND CONSERVED AND FLOOD STORAGE IN NH'S COASTAL COMMUNITIES

Source: State of Our Estuaries, Conserved Lands (SOOE Extended), PREP 2023.

Note: The Town of Farmington is excluded. Flood storage and mitigation areas were not identified within the town

EVALUATION METRIC

EFFECTIVENESS OF LAND CONSERVATION PLANNING FOR FLOOD RESILIENCE

Most evidence of	Moderate evidence of	Less evidence of	No evidence of
effectiveness	effectiveness	effectiveness	effectiveness
(Group 1)	(Group 2)	(Group 3)	(Group 4)
≥3 of 5 outcome	2 of 5 outcome	1 of 5 outcome	0 of 5 outcome
variables establish	variables establish	variables establishes	variables establish
effectiveness	effectiveness	effectiveness	effectiveness
Barrington	Farmington	Hampton	Rollinsford
Dover	Rye	North Hampton	Madbury
Deerfield	Hampton Falls	Stratham	Epping
Exeter	Newington	Durham	New Castle
Portsmouth	Brentwood	Lee	
Greenland	Seabrook	Newfields	
Nowmarkat			•

Findings: Predictors of effectiveness

Explanatory Variable		Weaker associa		n Stroi	Stronger association	
Perception of flood risk mitigation		59	%			
Data usage		569	%			
Multi-scale stakeholder engagement	-	50%)			
Public and private stakeholder engagement		50%)			
Perception of viability and effectiveness		44%				
Conflict framing	_	43%				
Funding for land conservation	-	43%				
Knowledge co-production		39%				
	0%	20%	40% atch	60% □ No	80% Match	100%

HOWEVER:

Perceived flood risk mitigation as a high priority <u>doesn't equal</u> better protection of flood storage areas.

For example: **Town of Hampton:** "High" priority 15% of flood storage areas conserved **VS. Town of Newmarket:** "Medium to High" priority 65% of flood storage areas conserved

Other Findings: Land Conservation Priorities

n = 23 municipalities

• Low relationship between perception of flood mitigation and inclusion of flood mitigation as a conservation priority

- Low administrative capacity. Only 3 out of 23 communities had a dedicated staff person for conservation-related issues.
- Limited grant opportunities to protect flood storage areas.
- Flood mitigation is often seen as a co-benefit of conservation planning efforts, rather than the main priority.

Natural hazard mitigation is not seen as a responsibility of the conservation commissions.

Michal Zahorik Ph.D. Candidate Department of Natural Resources and the Environment, UNH michal.zahorik@unh.edu

Catherine M. Ashcraft, Ph.D. Assistant Professor Department of Natural Resources and the Environment, UNH catherine.ashcraft@unh.edu

This project was supported by: USDA National Institute of Food and Agriculture through the NH Agricultural Experiment Station Award #NH00651 and New Hampshire Water Resources Research Center FY 2021 Section 104 Research Program Grant.

